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S U M M A R Y  
The collapse shape=and internal velocity field of an initially circular homogeneous fluid mass surrounded by a linearly 
stratified fluid are computed. During the initial stage of collapse, the fluid is assumed to be irrotational and inviscid 
while in later stages the Navier-Stokes equations are solved numerically by a modification of Chorin's primitive 
variable decomposition method. The final stage is analyzed by means of an asymptotic viscous tong-wave theory. 

1. Introduction 

Even very mild density stratification in a fluid can radically alter its dynamic behavior and 
have seemingly disproportionate effects, giving rise to phenomena that are unknown in 
homogeneous fluids. Such is the case for wakes in density stratified liquids. Whereas wakes in 
homogeneous fluids of large extent are subjected everywhere to the same gravitational force, 
the mixing and consequent disruption of the equilibrium density configuration by turbulent 
wakes in stratified fluids result in gravity induced pressure gradients that generate secondary 
fluid motions. These motions are responsible for the vertical collapse and horizontal spreading 
of the wake cross-section, which in turn generate internal gravity waves and horizontal dis- 
placement of fluid outside the wake; these phenomena are absent in homogeneous-fluid 
wakes. The phenomenon of collapse of three-dimensional wakes was first demonstrated 
by Schooley and Stewart [1], in small-scale experiments with a selfpropelled cylindrical body 
moving along its axis in a linearly stratified liquid. Schooley and Stewart also pointed out that 
a collapsing wake is an efficient generator of internal gravity waves, many of which are of 
high order, that manifest themselves in lateral movement of the fluid at the free surface. 
Kennedy and Froebel [2] measured the velocity distribution in a wake generated by a two- 
dimensional plate towed at the interface of a two-layered fluid, and found that the wake half- 
width (defined as the distance between the points where the velocity is one-half the centerline 
velocity) attains a maximum a short distance behind the plate, and then rapidly diminishes. 
Monroe and Mei [3] investigated the shapes of two-dimensional wakes generated by a circular 
cylinder towed normal to its axis through linearly stratified fluids, and also found that stratifi- 
cation inhibits vertical expansion of the wake and can lead to wake collapse. 

The collapse processes are quite different for two- and three-dimensional wakes. In the 
former, collapse occurs if gravitational forces restore fluid displaced vertically, by turbulent 
diffusion, to levels of static equilibrium before turbulent mixing relieves the density difference 
over the region of disequilibrium. Monroe and Mei [31 introduced into the classical differential 
equation describing two-dim~sional wake growth a term to account for the gravitational 
"restoring force," and were thereby able to predict the general form of the wake growth and 
subsequent collapse. For three-dimensional wake configurations, on the other hand, the wake 
(mixed region) initially grows because of turbulent mixing, as is also the case for two-dimensional 
wakes. However, the ensuing collapse results primarily from the mixed fluid moving toward 
and spreading laterally at a level where it will be in static equilibrium with the surrounding 
fluid. The collapse and accompanying lateral spreading produce horizontal displacement of 
the stratified fluid surrounding the mixed region; the fluid laterally adjacent to the wake 
converges above and below the level of spreading, and is displaced outward at the level where 
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the mixed fluid finds density equilibrium, as was noted by Stockhausen, Clark, and Kennedy [4]. 
Wu [5], [6] conducted a cleverly conceived experimental investigation of an idealized 

representation of the three-dimensional wake collapse process in a plane normal to the path 
of the wake-generating body. He isolated, dyed, and thoroughly mixed a semi-circular section 
of a linearly stratified fluid contained in a long, relatively narrow, laboratory tank. The mixed 
fluid was then released into the surrounding stratified fluid and its collapse and spreading were 
recorded photographically. From the motion picture film, Wu was able to obtain precise 
time reco/ds of the fluid deformation. He found that the collapse process can be divided into 
three stages, which he termed "initial", "principal", and "final". Empirical formulas were 
obtained to describe the process during the first two stages, and the scaling parameter approp- 
riate to these stages was found to have the form of the Brunt-V~iis~U~i frequency. During the 
first two phases of the collapse, very little mixing occurred at the interface between the homo- 
geneous and the stratified fluids. The final stage of collapse was complicated by viscous effects 
and by the onset of mixing at the thin tip of the wake. 

The primary objective of the calculation described herein was to develop a computational 
model for both the shape and internal velocity field of an initially circular homogeneous 
region surrounded by a linearly stratified liquid of infinite extent. During the initial stage of 
collapse the fluid is assumed to be inviscid and the motion irrotational. For the later stages, 
when viscous effects assume a significant rate, the complete Navier-Stokes equations are 
solved. The final stage of collapse is analyzed by means of a viscous, long-wave theory. The 
pressure acting on the boundary of the mixed region is assumed to be hydrostatic throughout 
the collapse process. The computed results are found to be in reasonable agreement with the 
experimental data obtained by Wu [5], [6] in the corresponding physical model. A new 
numerical method is described for obtaining solutions for the complete Navier-Stokes equa- 
tions in problems involving moving boundaries. The technique involves an extension of an 
approach due to Chorin [7], [8]. 

2. Formulation and Numerical Solution for the Inviscid Model 

The coordinate system adopted and the initial configuration to be analyzed are depicted in 
Figure 1. Note that in the coordinate system chosen, p~ < 0 for stable static conditions. The 

u 

a I 
X 

Fig. 1. Definition sketch. 

regions interior and exterior to the boundary of the homogeneous (wake) zone are denoted by 
R1 and R2, respectively. The fluid in R 1 is treated as incompressible and inviscid and the motion 
as irrotational. Hence, the equation to be solved is 

V2q5 = q ~ +  q~yy = 0 in R 1 (1) 
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where q~ is the velocity potential such that 

v =  (2) 

The motion in R 2 is largely ignored. The pressure exerted on R, and R2 is assumed to be the 
hydrostatic pressure of the stratified fluid. The dynamic boundary condition at the density 
interface, y = t/, is thus 

-~b , -g  P_2_y y2 lIUa-]- 
Po 5- + : t  v 2)=0  on y = q .  (3) 

The kinematic boundary condition on the boundary of R~ will be satisfied automatically in 
the numerical scheme used to calculate the boundary motion. The homogeneous region, R1, 
is assumed to be initially circular with diameter Do = 2a0 and at rest; hence, the initial conditions 
are 

U = V = 0  } 
x z+rl 2=a~ at t = 0 .  (4) 

If the equations set forth above are non-dimensionalized using Do, Po, (gl&l/Po) -~, and 
Dgglpy[ as the characteristic length, density, time, and pressure, respectively, they retain 
exactly the same form in the dimensionless variables. Furthermore, it emerges that Do I&l/Po 
is the dimensionless parameter characterizing the problem. 

The computational philosophy is as follows. The dynamic boundary conditions on i/, (3), 
is expressed in a forward difference form, 

[(~(t+ At)-(o(t)],=,= At (~-gPrPo TY2 + ~,,=,.tu2+vzl +O[(At)2] (S) 

For the static initial conditions described by (4), 

~b(At) , ,= ,=-At{g p" y2} - -  + O [ ( A t ) : ]  . (6) 
Po 5- y:,;,=o 

Equations 5 and 6 give the boundary values of q~ at any time t+ At. The velocity potential at 
interior points, at t+At, was determined from a finite difference simulation of (1). 

The Gauss-Seidel method, accelerated by the successive overrelaxation schemes described 
by Young [9] and given in Ames [10], was used to obtain ~b. Preliminary computational 
experiments revealed that the convergence rate of this method for the present problem is at 
least four times as great as that of the standard Gauss-Seidel iteration. After ~b was determined 
for each interior mesh point, the interior velocities were calculated by numerical differentiation 
and the boundary velocities were obtained from interior velocities by three- or five-point 
Lagrangian extrapolation. The boundary velocities so obtained were used to calculate the 
position of the density interface at the end of the time increment, and were also substituted into 
(5) to obtain the boundary values for calculation of q~ at t + 2At. The double symmetry of the 
initial boundary and of the initial boundary condition, (6), assures that the boundary contour 
and velocity field will be bisymmetric, about the x and y axes, at all subsequent times; conse- 
quently, the finite difference calculation was carried out only for one quadrant. Symmetry also 
dictated that the boundary conditions along 0 Y and OX (see Figure 1) are 4~x = 0 and q~r = 0, 
respectively. The domain of integration was subdivided into a rectangular grid. The vertical 
and horizontal increments were both initially taken to be equal to Do/24. Later, as the boundary 
deformed, their magnitudes were changed independently as needed to reduce the convergence 
time. The computational molecules were modified as needed at meshes cut by the curvilinear 
boundary, due attention being given to maintaining consistent computational accuracy. The 
convergence criterion adopted was IA(ot/d~< 0.001 between successive trials. A dimensionless 
time increment of A t = 0.2 was chosen after some preliminary computational experimentation. 

As an independent check on the computational scheme, the Dirichlet problem for the initial 
circular profile was solved by use of Poisson's integral formula, and the results compared with 
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those obtained by the method of finite differences. The solutions were indistinguishable. 
A more complete description of the calculational strategy and details is given by Padmanab- 

han [11] in his doctoral thesis. Suffice it here to note that the finite-difference scheme was 
adopted in preference to a variational method or one involving integral equations because most 
of the computational framework utilized in the finite difference scheme was also required for 
the viscous model. A comparison of the computational results with available experimental data 
is presented in Section 5. 

3. Formulation and Numerical Solution for the Viscous Model 

The model described in the preceding section can be expected to describe the collapse process 
only during the early stages, when the momentum balance is primarily between gravitational 
and inertial effects. Later, as the velocity and velocity gradients develop, dissipative forces 
play an even greater role. If the viscosity, either molecular or eddy, is assumed to be constant 
in time and space--a tenuous but practically unavoidable assumption--the non-dimen- 
sionalized equations to be treated are 

Ux+Vy=O (7) 

1 1 V2 
t,l t + UU x + VUy -- F2 h~ + ~ u (8) 

1 1 
vt + UVx + vvy = F2 hy + ~ V 2 v (9) 

where h = P/Po 9 + Y is the piezometric head, F 2 = Do I p,I/po, R = (Po Dg ~ Po)/#, and # 
denotes the viscosity--molecular or other. The collapse process is now characterized by two 
dimensionless groupings, the additional one reflecting the role of viscosity. 

The kinematic boundary condition will be automatically fulfilled in the computational 
model, as it was for the inviscid case, since after each discrete time interval the boundary 
displacement is computed from the boundary velocities. The dynamic boundary conditions 
require that the normal and tangential stresses be continuous across the interface. These 
conditions are difficult to satisfy exactly for several reasons. First, the normal stress can be 
calculated only if the surface orientation is known; however, this can be accurately sensed in 
a finite difference approximation only if the mesh is very fine. Second, and more important, 
in the iteration scheme used, various velocity derivatives at the surface were chosen on the basis 
of (7), but these do not necessarily give the correct viscous stresses. Finally, since the motion of 
the fluid in R2 was not calculated, it was not known what shear stress is applied to the boundary. 
In view of these difficulties, the lead of Harlow and Welch [-12] was followed, the viscous 
stresses on the interface were ignored, and the surface pressure equated directly to the hydro- 
static pressure of the surrounding stratified fluid. This should be an adequate measure, except 
in cases of very small values of R. 

The numerical solution of incompressible viscous flow problems presents some formidable 
difficulties, due mainly to the special role played by pressure gradients. In two-dimensional 
problems, this difficulty can be by-passed by eliminating the pressure from the equations and 
treating vorticity and the stream function as the pertinent dependent variables. Unfortunately, 
the vorticity stream function technique could not be used to good advantage in the present 
problem because the interface is not a streamline. Therefore, it was decided to seek solutions of 
the governing equations in the primitive variables: the velocity and piezometric head. The 
bisymmetry made it possible to limit the domain of solution to one quadrant. 

The numerical methodology adopted is an extension of one recently developed and employed 
by Chorin [7], [8]. Let u, v and h denote the solution of (7), (8), and (9) as well as their discrete 
approximations, and let D V  = 0 be a difference approximation for the continuity equation, (7). 
It is assumed that at time t = 17 At, velocity and piezometric head fields u ", v", and h" are given 
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satisfying DV'=0.  The task at hand is to evaluate u n+ 1, v,+ 1, and h "+ 1 using the governing 
equations so that D V  "+ 1 =0. 

Auxiliary fields Fi (u, v) and F2 (u, v) are computed by means of 

u ""x= u"+AtF , (u ,  v) (10) 

v ""~ = v"+AtFz (u  , v) (11) 

where 

1 V2 (12) F1 (u, v) = - u u x -  vuy + ~ u 

and 
1 

F2(b/ ,  / ) ) =  --bll)x--Vl)y -~ ~ V 2 / ) .  ( 1 3 )  

It can be seen that in the evaluation of u au~ and va% the piezometric head terms in the Navier- 
Stokes equations have not yet been included. A variant of the alternating direction scheme 
analyzed by Samarskii [ 13] is used to evaluate u ~":' and v ~"~ from (10)-{13). The initial conditions 
on (u, v) are given by the velocity field at t = n A t. On the x-axis, 8u/c~y = 0 but & / @  r O. The 
contribution of the term AtF~ (u, v) of Eq. (10), at points on the x-axis, is shown to be small 
compared to u" by Padmanabhan [11]. As the wake elongates the significance of the term 
further decreases. Chorin [8] also employs the boundary conditions adopted herein on the 
x-axis, namely u ""~ = u", a u a u x / a y l y =  o = O. 

The piezometric head is now calculated. The divergence of the Navier-Stokes equation is 
approximated by the finite difference analogue 

~--~ E h " -  DV"At DQV" + 1 DLV"  (14) 

where D V  approximates V' V, LVapproximates V 2 V, Q approximates V. V V and/2 approxim- 
ates V 2 h. The first term on the right-hand side of (14) arises because of Chorin's [7], [8] 
numerical method. Equation (14) is a Poisson equation in (h), and was solved iteratively by 
employing a five point computational molecule and a Dufort-Frankel relaxation scheme 
(Ames, [14]) using the auxiliary velocities calculated according to (10) and (11). For the present 
problems, the values of the piezometric head are known on the curvilinear boundary. Symmetry 
properties were used on the coordinate axes. 

Written in detail, the implicit Dufort-Frankel scheme takes the following form at an interior 
point (u".'m = u" (i Ax, j Ay, n A t), m the iteration number) "~ l,J \ 

h n + l , m + l  h n + l , m  L72~1-/" n + l , m + l  n + l , m + l ' t ~ , , ,  ~, - - I  n + l , m + l  n+l,m+lXz,~-- 7 
t,J ~" "'t,3 - - - -  "~ LtUi+ 1,j - -  U i -  1,j ) / Z / I X +  tVi , j+I  -- Ui,j- 1 )/zz~Y3 

1 n+ 1 , m + l  aux Ui+l,j : b l i + l , j  -Fs(At/2Ax) rI'"+i'm l thn+l,rn• - -  k'~i + 2,j  --2Uti,j ~ ' t i , j  ]d 

,+1,m+1 = u~,X ~(At /2Ax)[ �89 l,,~+ l + hi,j ) U i -  1 , j  i -  1 , j  __ , n +  1 ,m  --'~i-2,jhn+ 1,mqj 

1 n + l , m + l  aux n+ l,m 1 n + l , m + l  n+ l,m]'] 
Vi,j+l : U i , j + l -  -F~(dt /2dy)[h i , j+2 - ~ ( h i , j  +hi , j  ld 

n + l , r n + l  aux 1 1 n+l,m+l• 1,rn]__l~n+l,m" ] 
1")i , j--1 = vi,j-I -- ~(At /2Ay)[-~(hi , j  - ' % j  j m,j-2 j .  

The quantity 2 is analogous to the successive over-relaxation parameter co and the direct 
relationship between them is given by 

o9 = 2/[1 +(�89 

Journal of Engineerin 9 Math., Vol. 4 (1970) 229-241 



234 H. Padmanabhan et al. 

Modifications near the boundaries are discussed in detail by Padmanabhan [11]. 
Two major difficulties were encountered in the computation. The first occurred when the 

intersections of the curvilinear boundary with the grid lines were used as the mesh points for 
the finite difference analysis. This approach did not consistently produce convergent results, 
probably because some of the mesh distances adjacent to the boundary were very small. The 
problem was resolved by approximating the partial differential equations with the standard 
finite difference molecule at all points. As a consequence, the boundary conditions were satisfied 
not on the curvilinear boundary, but on an exterior ring of meshpoints of polygonal shape. 

The second problem was more serious. During the process of computation, it was found that 
the finite difference scheme behaved well when the shape of the boundary is circular, or nearly 
so. At later times, when the shape became elongated, the scheme diverged because there were 
not enough meshpoints near the wake tip to define a finite difference approximation to the 
prescribed order of accuracy.~Two alternative solutions were considered. The first was to use 
a mesh size in the vertical direction which is much smaller than that in the horizontal direction. 
Second, the mesh size could be kept the same in both directions, but the problem solved in a 
transformed, nearly circular region. Such a transformation could be accomplished by linearly 
stretching all the vertical dimensions. After some numerical experimentation, the latter alter- 
native was found to be superior and hence was adopted. 

Such a linear transformation requires transformation of the governing equations and bound- 
ary conditions as well. In order that the transformed equations retain, so far as possible, the 
same form as the original equations, the vertical velocity and the piezometric head were also 
stretched by means of the relations 

y r=  fly, v r =  flv, h r =  flh 

where/3 is a magnification parameter and superscript T denotes the transformed variable. The 
transformed counterparts of (7), (8), and (9) are: 

(15) Ux-l- VyT = 0 

1 r 1 
ut+uux+vru,T = flF-~ h~ + -R (u,~+fl2u,,,~ -) (16) 

v f+  r r r /3 r 1 r 2 r (17) 

Equations 15-17 are written in finite difference forms, in which they retain almost the same 
form as the original equations, and solved subject to the transformed initial and boundary 
conditions. After the iterative processes were completed, the transformed variables were 
reconverted to the original variables. Since the whole intention was to work with a more or 
less circular boundary, the magnification parameter fl was modified as the profile changed ; fl 
was initially unity and in the final stages became as large as twelve. 

Even though the behavior of the finite difference scheme was improved with this modifi- 
cation, it still had some shortcomings. For example, the convergence, which was very fast 
during the early stages, became rather slow at large times. This necessitated termination of 
the computational solution at approximately ten dimensionless time units. 

A value of 0.2 was chosen for A t. It was found that if (u A t) and (v A t) are both much smaller 
than unity, no instability difficulties are present. If, however, the values of the horizontal 
or vertical velocity reach values such that either uAt or vat exceeds about 0.10, the iterative 
scheme for the determination of auxiliary velocities becomes unstable. There are no theoretical 
guidelines for determining spatial mesh sizes required for a specified error. After some pre- 
liminary trials, the initial mesh size was taken as Do/16. The convergence criterion adopted was 
Ah/h <= 0.002. The two values of the Reynolds number, R, employed in this study, were very high : 
50.000 and 70.000. The numerical scheme did not present any difficulties on this account. A 
comparison of the computational results with available experimental data will be given in 
Section 5. 
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4. Asymptotic Solution for the Final Stage of Decay 

At large times after the initiation of motion, when the boundary between R 1 and R a becomes 
very elongated, a long-wave approximation suitable for viscous fluids should be applicable*. 
Let it be assumed that the flow is then locally horizontal and only weakly time dependent. In 
other words, the physical unknowns, u and p, are slowly varying functions ofx  and t. Therefore, 
if dimensional variables are restored, the Navier-Stokes equations reduce to 

#uyy = Px, 0 <  y <  t/. (18) 

The motion remains symmetric with respect to both axes. Assm "L.g now that the pressure 
distribution in both the fluids is hydrostatic, the pressures Pl in the inner fluid and P2 in the 
outer fluid are 

Pl = P o g ( r l -  y ) +  P2ly=n (19) 

f' Pz = Po - po9(1 + y p S p o ) d y .  (20) 
o 

Upon substituting (20) and (19) and differentiating with respect to x, there results 

1 
- -  Plx = - 9 (Pr/Po)'7~x . (21) 
p0 

Hereinafter, the subscript 1 is dropped and p denotes the pressure in the inner fluid. Introduc- 
tion of (21) and (18) yields 

ur, = ~ (x, t) (22) 

where v is the kinematic viscosity of the inner fluid and c~ = - (gpSvpo)rlrb,. Since the dependent 
variables are assumed to be only slowly varying functions of x and t, direct integration is 
possible so that 

~y2 
u = ~ -  + B y + C  (23) 

where B and C are integration constants. Since the motion is symmetric with respect to the 
x-axis, B = 0. Moreover, the maximum velocity occurs at the centerline; therefore 

0~y 2 
U = T -}- b/max" (24) 

Inspection of the computational results obtained from the inviscid model for t > 15 (di- 
mensionless units), when the hydrostatic pressure distribution is valid, revealed that the ratio 
of the horizontal velocity at the interface to that at the centerline is primarily a function of 
(x/a (t)), where a (t) is the wake front position, and that this function can be closely approximated 
by an equation of the type 

u(t/) _ r  (25) 
b/ma x B~ -It- C 

where A, B and C are constants, and r = x /a  (t). The computational result, from the inviscid 
solution, and the approximation (given by (25)) with A = - 0.05, B = 0.90, and C = 0.05, are shown 
in Figure 2. (In Mei's analysis, cited above, it was assumed that the ratio U/Umax is constant.) 
Substitution of (25) into (24) yields 

u = ~  y2 ~ - + A  " (26) 

1 g47c/  
* This approach was suggested by an analysis performed by Professor C. C. Mei [15] of the MIT Hydrodynamics 
Laboratory and sent to Kennedy as a personal communication. 
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Fig. 2. Ratio of horizontal velocity at density interface to velocity at midheight (y = 0), computed from inviscid model 
and approxiinated by polynomial. 

The discharge per unit width through the upper half of the layer, 0 < y < q, is obtained by 
integrating (26): 

~+A " 2 3 1 B - ~ /  
(27) 

Substituting (27) into the continuity equation, qx+ q, =0, yields 

tb+ 0x /  2 �89 ? + A  = 0 .  (28) 
1 B ~ / ]  

The mathematical formulation will be more convenient if the solution is sought in the (4, t) 
plane. In the new variables, (28) becomes 

~+A r/gt/r = 0. (29) 
2va2 Po 1 B~ + C 

Equation (29) is similar to the q-dimensional equation with spherical symmetry, discussed 
by Ames [14]. Since the similarity variable is x/a(t), a trial solution is attempted in separated 
form: 

~1(~, t) = T(t)" X(~) (30) 

with T, X and a as yet unspecified. Substitution of (30) into (29) yields 

~+A X 4 X  = a ( t ) [ a r ' X - ~ r X '  a'] (31) 
2v ~o 1 B~ + C 
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where the primes denote differentiation. The right-hand side of (31) may be expressed as 

a(0 r' ra '  a 

which is separable if and only if 

ra'  = - DT' a (33) 

where D is a constant. Integration of (33) gives 

a = T - ~  . (34) 

The right-hand side of (31) takes the form a 2 T' (X + D~X') so that the equation separates to 

d [ l  1 ) 1 ~- 1 ~+A �89 X 4 X '  

T' g py B~ + C 
a Z ~ -  2v Po X + D ~ X '  = - E .  (35) 

The continuity condition is now expressible as 

f i ~ d x = a T f l o  X d ~  - r  ca~ (36) 

where ao is the radius of the initial circular profile. Since S~ X d ~  is a constant, aT  is also a 
constant, and from a (t)= T-D it follows that D-- 1 and a T-  1. Introduction of this information 
into (35) yields the relation 

T' 
- E T v 

which upon integration becomes 

T = [6 (E t -  F)]-  + (37) 

where F is a constant of integration. Since aT  = 1, it follows that 

a = [ 6 ( E t - r ) ]  +~ . (38) 

Introducing D= 1 into (35) and integrating once with respect to ~ yields 

~ + A X4 X '  = E ~ X  + G (39) 
2v Po 1 B~ + A 

where G is an integration constant. Since X ' =  0 when ~ = 0, G = 0. With this condition, (39) 
can be cast into the form 

X3 X,  - 2vE Po ~ (40) 

l 1 B~+C 

Integration once again with respect to ~ yields 

2B+ 1 (2B+ l) 2 l~ + 2B + - - - i -  + H (41) 
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where H is a constant of integration that can be expressed in terms of A, B, and C through use 
of the condition X(1)=0. Since ao and Po/Py are known quantities, the constant E can be 
evaluated by substituting (41) into (36). 

The other constant of integration in (37) and (38), F, has to be evaluated from the initial 
conditions. The condition at t = 0 is not applicable since many of the assumptions used in the 
long-wave analysis are not then valid. Instead, the initial condition was taken as the computed 
value of the wake-front coordinate at t equal to about fifteen dimensionless units. Knowing 
T (t) and X (4), the form of the profile at any time can be found from (30). The velocity of the 
wake front can be obtained by differentiating (38), 

u(a(t)) = E [ 6 ( E t - - F ) ] - { .  

A comparison of the results with experimental data is furnished4n the following section. 

5. Comparison of Computational and Experimental Results 

Calculations were carried out for density gradients of - P / P o  =0.01549 and 0.0807 ft-1 for 
the inviscid model and -pSpo=O.O1549 and 0.00810 ft -1 for the viscous models. These 
conditions correspond to three of those included in the experimental investigation conducted 
by Wu [5], described briefly in Section 1. The kinematic viscosity, v, was taken to be 1.2 x 10- 5 
ft2/sec. Figure 3 presents a comparison for one density gradient between the measured wake 

, 5  , , , , , , , , , 

2 o t 

0 ' 0 0  2 4 6 8 I 0  12 14 16 18 2 0  

Fig. 3. Observed and computed values of lateral wake-front position, as functions of non-dimensionalized time: 
(1/po)lOp/~yl = 0.01549 ft- ~. 

front advance and those calculated using the inviscid and viscous finite difference models. 
The choice of the particular value ofp /po  is somewhat inconsequential, inasmuch as Wu found 
that the data for t < ~ 25, for all density gradients studied, fell along one curve when plotted 
in the format of Figure 3. The agreement between the measured values and those computed 
using the viscous model is acceptable for values of non-dimensional time t less than about 5 ; 
thereafter, there is pronounced divergence. The discrepancy at larger t arises, no doubt, from 
the assumption of hydrostatic pressure in the stratified fluid. In fact, the pressure applied to 
the homogeneous zone must be significantly affected by the motion in R2, and in such a way 
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that the spreading occurs faster than calculated. Additionally, Wu's [5] Figure 9 shows that 
there is an apparently minor instability at the density interface that causes the formation of 
minor advance fronts above and below the level of principal spreading. The present model does 
not allow for such instability. Additional sources of divergence are the finite size of the tank 
used by Wu, and the errors arising from round-off, truncation, and discretization errors arising 
in the numerical solution. Logarithmic plots of the computed data presented in Figure 3 
revealed that a/ao varies a s  t 0"33 and t T M  for the inviscid and viscous models, respectively. 
Wu [5] found in his experimental study that a/ao= 1.03 t ~ during the principal stage of 
collapse (4 < t < 25). 
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Fig. 4. Horizontal velocities at wake front and vertical velocities at wake bottom computed with inviscid and viscous 
models. (1/po) lc~p/0yl) = 0.01549 ft - 1. 

Figure 4 depicts the computed horizontal velocities at the wake front and vertical velocities 
at the wake apogee (or perigee) as functions of dimensionless time. It is seen that both velocities 
rapidly attain maxima and then diminish. The velocities computed with the viscous and in- 
viscid models exhibit quite similar behavior throughout the period covered by the calculation. 
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Fig. 5. Wake profiles at various non-dimensionalized times, computed using inviscid model. (1/po)[Op/@[) = 0 . 0 1 5 4 9  
ft -1" 
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Figure 5 shows the wake contours computed with the inviscid model. The corresponding 
results obtained with the viscous model were found to be very similar in qualitative character, 
and exhibit the quantitative differences the data of Figure 3 would indicate. As a loose check 
on the computational procedure, the area of the profile was evaluated at each computational 
time step and compared to the initial area of the mixed region ; the difference never exceeded 
five per cent of the area of the initial circle. 

The long-wave formulation for the final stage of decay was evaluated for the two density 
gradients specified above. A summary comparison of computed and measured wake front 

TABLE 1 

Comparison between calculated and measured wake front positions 

t(IPylgl~ a(t)/ao a(t)/ao 
\P0 ] (calculated) (measured by Wu (1965)) 

- Py/Po = 0.01549 ft- 1 

17.7 7.60 6.00 
35.4 10.50 8.20 
70.7 12.10 10.20 

-Py/Po = 0.00810 ft-1 

12.8 5.00 5.00 
35.6 9.20 7.20 
51.1 11.04 10.20 

positions is presented in Table 1. The dimensional formulas obtained after evaluating the 
constants E and F in Eq. (38) are, in ft/sec units, 

a(t) = [6(120t-  2500)] +, - Pr/Po = 0.01549 ft -~ 
and 

a(t) = [6(62t-  1500)] +, -Pr/Po = 0.00810 ft - t  

At large t (t > 100 sec, say), the second term in parenthesis becomes negligible and a ~  t +, and 

the wake front velocity varies as t-  ~. Note that results obtained with the viscous model, used to 
evaluate the initial condition, are influenced by the inertial, gravitational, and viscous effects, 
and hence it is not possible to express a(t) as a function of just one scaling parameter during 
the final stage of collapse. 

Additional computational results, including distributions of velocities and piezometric 
head, are presented by Padmanabhan [11] in his thesis. 
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